Perception and memory have distinct spatial tuning properties in human visual cortex

2020 
Abstract Reactivation of earlier perceptual activity is thought to underlie long-term memory recall. Despite evidence for this view, it is unknown whether mnemonic activity exhibits the same tuning properties as feedforward perceptual activity. Here, we leveraged population receptive field models to parameterize fMRI activity in human visual cortex during spatial memory retrieval. Though retinotopic organization was present during both perception and memory, large systematic differences in tuning were also evident. Notably, whereas there was a three-fold decline in spatial precision from early to late visual areas during perception, this property was entirely abolished during memory retrieval. This difference could not be explained by reduced signal-to-noise or poor performance on memory trials. Instead, by simulating top-down activity in a network model of cortex, we demonstrate that this property is well-explained by the hierarchical structure of the visual system. Our results provide insight into the computational constraints governing memory reactivation in sensory cortex.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    7
    Citations
    NaN
    KQI
    []