Resource-Economical Synthesis by Selective Metal-Catalyzed C–H Activations

2021 
The advent of new synthetic strategies has enriched the synthetic organic chemistry to access molecules with tremendous complexity. In this context, transition metal-catalyzed C−H activation has emerged as a powerful tool for highly step- and atom- economical synthesis that avoids laborious prefunctionalizations of starting materials. First part of the thesis was focused on removable directing group assisted challenging C–F/C–H functionalization using versatile manganese(I) and ruthenium(II) catalysis manifold. As with fluorinated scaffolds, chiral molecules represent a class of highly desirable building blocks. Thus, the next part of the thesis focused on the development of sustainable enantioselective transformations using cost-effective transition metals. Similarly, metallaelectrocatalysis provides excellent resource economy for sustainable organic synthesis. A major portion of the thesis was focused on addressing improved sustainability and resource-economy for the activation of inert C–H bonds. The prime focus of the thesis was the development of cost-effective and environmentally-benign metal-catalyzed selective C−H activation reactions with olefins and alkynes with a major emphasis on the identification of resource-economical conditions. In addition, a considerable focus has been placed on the mechanistic understandings of these C−H activations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []