Precise Time-Step Integration Algorithms Using Response Matrices with Expanded Dimension

2008 
In this paper, the precise time-step integration method by step-response and impulsive-response matrices is further developed by expanding the dimension of the matrices so as to avoid computing the particular solutions separately. Two new precise time-step integration algorithms with excitations described by second-order and first-order differential equations are proposed. The first method is a direct extension of the existing algorithms. However, the extended system matrices are not symmetrical. In the second method, the Duhamel integrals are used as the particular solutions. As a result, the responses can be expressed in terms of the given initial conditions and the step-response matrix, the impulsive-response matrix and a newly derived Duhamel-response matrix. The symmetry property of the system matrices can be used in the computation. However, it will first require a calculation of the Duhamel-response matrix and its derivative. To reduce the computational effort, the relation between the Duhamel-response matrix and its derivative is established. A special computational procedure for periodic excitation is also discussed. Numerical examples are given to illustrate the present highly efficient algorithms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    3
    Citations
    NaN
    KQI
    []