Temporal Analysis of the Nuclear-to-cytoplasmic Translocation of a Herpes Simplex Virus 1 Protein by Immunofluorescent Confocal Microscopy

2018 
Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an immediate early protein containing a RING-type E3 ubiquitin ligase. It is responsible for the proteasomal degradation of host restrictive factors and the subsequent viral gene activation. ICP0 contains a canonical nuclear localization sequence (NLS). It enters the nucleus immediately after de novo synthesis and executes its anti-host defense functions mainly in the nucleus. However, later in infection, ICP0 is found solely in the cytoplasm, suggesting the occurrence of a nuclear-to-cytoplasmic translocation during HSV-1 infection. Presumably ICP0 translocation enables ICP0 to modulate its functions according to its subcellular locations at different infection phases. In order to delineate the biological function and regulatory mechanism of ICP0 nuclear-to-cytoplasmic translocation, we modified an immunofluorescent microscopy method to monitor ICP0 trafficking during HSV-1 infection. This protocol involves immunofluorescent staining, confocal microscope imaging, and nuclear vs. cytoplasmic distribution analysis. The goal of this protocol is to adapt the steady state confocal images taken in a time course into a quantitative documentation of ICP0 movement throughout the lytic infection. We propose that this method can be generalized to quantitatively analyze nuclear vs. cytoplasmic localization of other viral or cellular proteins without involving live imaging technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []