Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor

2017 
The design of graphene quantum dots (GQDs)-aptamer bioconjugates as the new sensing platform is very important for developing high-sensitivity fluorescent biosensors; however, achieving new bioconjugates is still a great challenge. Herein, we report the development of a new high-sensitivity fluorescent aptasensor for the detection of ochratoxin A (OTA) based on tuning aggregation/disaggregation behavior of GQDs by structure-switching aptamers. The fluorescence sensing process for OTA detection involved two key steps: (1) cDNA-aptamer (cDNA, complementary to part of the OTA aptamer) hybridization induced the aggregation of GQD (fluorescence quenching) after cDNA was added into the GQDs-aptamer bioconjugate solution, and (2) the target of OTA triggered disaggregation of GQD aggregates (fluorescence recovery). Such new fluorescent sensing platform can be used to monitor OTA with a linear range of 0 to 1 ng/mL and very low detection limit of 13 pg/mL, which is among the best in all the developed fluorescent n...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    85
    Citations
    NaN
    KQI
    []