Effect of cooling profile on crystalline phases, oxidation state, and chemical partitioning of complex glasses

2020 
Investigations of the crystallization of aluminosilicate phases within Hanford nuclear waste glasses typically involve subjecting samples to the canister centerline cooling (CCC) schedule. This cooling schedule is representative of the slowest cooling thermal profile which these glasses will experience after the glass is poured into the high level waste (HLW) container. However, few investigations have observed how the crystallization behavior changes by varying the heat treatment schedule. In the present study, three Hanford HLW glasses are subjected to CCC and isothermal heat treatments (IHT) to better understand the evolution of phases and the chemical partitioning due to temperature schedule. Samples were characterized using electron probe microanalysis, X-ray diffraction, micro X-ray fluorescence, and micro X-ray absorption spectroscopy. From IHT, eucryptite and apatite phases were observed which were not observed during CCC. Spatially-resolved measurements demonstrated that the oxidation state of the iron was similar among glass and crystal, and we suggest a mechanism to describe the compositional fluctuations near the crystal-glass interface which influence crystallization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    2
    Citations
    NaN
    KQI
    []