Damage characterization of an ASTM A 213 grade 91 tube after 116.000 h of service in a reforming plant

2015 
Abstract ASTM A213 T91 steel is used in power plants and petrochemical industry, for long-term service components. The improved mechanical properties of grade 91 are strictly related to its specific microstructure: a tempered martensite matrix with fine precipitates embedded in. Despite low alloy heat resistant ferritic steels, that have a well known operational experience, T91 service performances are still faintly consolidated, because this material has serviced only in a limited number of plants, since the eighties. Most of the available data were obtained by laboratory tests on relatively short term creep strength and corrosion properties. The investigations reported in this paper represent an important opportunity to describe and better evaluate the damage evolution of the grade T91 steel after more than 100000 h of exposure in severe conditions (580 °C, 18–26 bar, combustion environment). Our results suggest that the steel suffered by different damage forms, which appear on definite portions of the tube cross section. The main degradation forms observed, in fact, into the tube bulk are both the martensite recovery and the microstructural evolution. This latter promoted mostly Laves phase precipitation and coarsening. On the other hand, both the outer and the inner wall side, suffered mainly by severe oxidation/carburization. Especially on the outer surface, the massive carbide precipitation has caused an evident loss of ductility so that the mechanical properties of the tube appear appreciably reduced.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    7
    Citations
    NaN
    KQI
    []