Rashba-like spin splitting along three momentum directions in trigonal layered PtBi 2

2019 
Spin-orbit coupling (SOC) has gained much attention for its rich physical phenomena and highly promising applications in spintronic devices. The Rashba-type SOC in systems with inversion symmetry breaking is particularly attractive for spintronics applications since it allows for flexible manipulation of spin current by external electric fields. Here, we report the discovery of a giant anisotropic Rashba-like spin splitting along three momentum directions (3D Rashba-like spin splitting) with a helical spin polarization around the M points in the Brillouin zone of trigonal layered PtBi2. Due to its inversion asymmetry and reduced symmetry at the M point, Rashba-type as well as Dresselhaus-type SOC cooperatively yield a 3D spin splitting with αR ≈ 4.36 eV A in PtBi2. The experimental realization of 3D Rashba-like spin splitting not only has fundamental interests but also paves the way to the future exploration of a new class of material with unprecedented functionalities for spintronics applications. Rashba type spin splitting – relevant for spintronics applications - is driven by inversion symmetry breaking but could so far not be realized in all momentum directions in a crystal. Here, the authors report on PtBi2 that exhibits Rashba spin splitting in all three momentum directions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    23
    Citations
    NaN
    KQI
    []