Epileptic Spike Detection Using Neural Networks with Linear-Phase Convolutions.

2021 
To cope with the lack of highly skilled professionals, machine learning with proper signal processing is key for establishing automated diagnostic-aid technologies with which to conduct epileptic electroencephalogram (EEG) testing. In particular, frequency filtering with the appropriate passbands is essential for enhancing the biomarkerssuch as epileptic spike wavesthat are noted in the EEG. This paper introduces a novel class of neural networks (NNs) that have a bank of linear-phase finite impulse response filters at the first layer as a preprocessor that can behave as bandpass filters that extract biomarkers without destroying waveforms because of a linear-phase condition. Besides, the parameters of the filters are also data-driven. The proposed NNs were trained with a large amount of clinical EEG data, including 15,833 epileptic spike waveforms recorded from 50 patients, and their labels were annotated by specialists. In the experiments, we compared three scenarios for the first layer: no preprocessing, discrete wavelet transform, and the proposed data-driven filters. The experimental results show that the trained data-driven filter bank with supervised learning behaves like multiple bandpass filters. In particular, the trained filter passed a frequency band of approximately 1030 Hz. Moreover, the proposed method detected epileptic spikes, with the area under the receiver operating characteristic curve of 0.967 in the mean of 50 intersubject validations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []