Embelin attenuates cisplatin‐induced nephrotoxicity: Involving inhibition of oxidative stress and inflammation in addition with activation of Nrf‐2/Ho‐1 pathway

2019 
: In kidneys, elevated levels of inflammatory cytokines and oxidative stress were observed in nephrotoxicity triggered by cisplatin. Embelin has the anti-inflammatory property. It also got anti-tumorigenic and antioxidant properties. In this research, we analyzed the actions of embelin on nephrotoxicity triggered by cisplatin and vital actions by which it increases antioxidant actions and corrects the inflammation after embelin administration during nephrotoxicity triggered by cisplatin. Kidney function markers including blood urea nitrogen; serum creatinine; the markers of oxidative stress like malondialdehyde (MDA), antioxidant systems like glutathione, superoxide dismutase, glutathione S-transferase, catalase, and glutathione reductase; inflammation markers like nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1 beta (IL-1β); and the extent of nuclear factor-erythroid-2 p45-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) were determined. Histopathology studies of kidneys were also used to analyze nephrotoxicity induced by cisplatin. Treatment with embelin (25 and 50 mg/kg) upgrades the function of kidneys, by elevating antioxidant levels and reducing the MDA level in cisplatin-administered rats. Embelin treatment demonstrated a significant curtailment of oxidative stress as well as increased the activities of antioxidant enzymes, endogenously. Cisplatin upregulates cytokines (i.e., TNF-α and IL-1β) and NF-κB, and downregulates Nrf2 and HO-1. Embelin treatment also reduced the infiltration of neutrophils in the renal tubules and thus reduced the level of histological impairment. The outcome of this study implements that the signaling pathway of Nrf2/HO-1 may be the principal mechanism of embelin for protection from nephrotoxicity triggered by cisplatin, and thus, embelin diminishes oxidative stress and inflammation by impeding NF-κB. © 2019 BioFactors, 45(3):471-478, 2019.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    11
    Citations
    NaN
    KQI
    []