Short-lived long noncoding RNAs as surrogate indicators for chemical stress in HepG2 cells and their degradation by nuclear RNases

2019 
Long noncoding RNAs (lncRNAs) are non-protein-coding transcripts >200 nucleotides in length that have been shown to play important roles in various biological processes. The mechanisms underlying the induction of lncRNA expression by chemical exposure remain to be determined. We identified a novel class of short-lived lncRNAs with half-lives (t1/2) ≤4 hours in human HeLa Tet-off cells, which have been suggested to express many lncRNAs with regulatory functions. As they may affect various human biological processes, short-lived lncRNAs may be useful indicators of the degree of stress on chemical exposure. In the present study, we identified four short-lived lncRNAs, designated as OIP5-AS1, FLJ46906, LINC01137, and GABPB1-AS1, which showed significantly upregulated expression following exposure to hydrogen peroxide (oxidative stress), mercury II chloride (heavy metal stress), and etoposide (DNA damage stress) in human HepG2 cells. These lncRNAs may be useful indicators of chemical stress responses. The levels of these lncRNAs in the cells were increased because of chemical stress-induced prolongation of their decay. These lncRNAs were degraded by nuclear RNases, which are components of the exosome and XRN2, and chemical exposure inhibited the RNase activities within the cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    9
    Citations
    NaN
    KQI
    []