Experimental and numerical investigation of saltwater intrusion dynamics on sloping sandy beach under static seaside boundary condition

2020 
Abstract Two-dimensional sandbox experiments were conducted to investigate the variable-density circulation and flow patterns in sloping beach configurations. The experiments provide new benchmark results for validating the sandbox models based on quantitative and qualitative measurements. Previous studies have considered density dependent flow in porous media, vertical beach face saltwater boundary, and multilayered hydrogeology ignoring a sloping beach face, which is a much more common phenomenon in real world. The present study considers sloping beach face under both homogeneous and low-permeability strata configurations. The geohydraulic processes encountered were quantified through pore-water pressure measurements and image analysis techniques. Moreover, validations were performed with numerical simulations (FEFLOW). A simple image analysis procedure is proposed with respect to two-dimensional laboratory scale benchmark experiments. Experimental results provided a detailed circulation flow path within and outside the saltwater wedge with sloping beach face. Fingering effect in porous media was also observed for both the experiments during initial time periods. Stability analysis shows the existence of a stationary convective flow pattern followed by gravitational instabilities under a the quasi-steady state condition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    1
    Citations
    NaN
    KQI
    []