Prognostic value of SRSF2 mutations in patients with de novo myelodysplastic syndromes: A meta-analysis

2017 
Background The recent application of gene-sequencing technology has identified many new somatic mutations in patients with myelodysplastic syndromes (MDS). Among them, serine and arginine rich splicing factor 2 (SRSF2) mutations belonging to the RNA splicing pathway were of interest. Many studies have already reported the potential prognostic value of SRSF2 mutations in MDS patients, with controversial results. Therefore, a meta-analysis was performed to investigate their prognostic impact on MDS. Methods Databases, including PubMed, Embase and the Cochrane Library, were searched for relevant studies published up to 14 October 2016. Overall survival (OS) was selected as the primary endpoint, and acute myeloid leukemia (AML) transformation was the secondary endpoint. We extracted the corresponding hazard ratios (HRs) and their 95% confidence intervals (CIs) for OS and AML transformation from multivariate Cox proportional hazards models. The combined HRs with their 95% CIs were calculated using fixed or random effect models. Results A total of 10 cohort studies, covering 1864 patients with de novo MDS and 294 patients with SRSF2 mutations, were included in the final meta-analysis. Our results indicated that SRSF2 mutations had an adverse prognostic impact on OS (p<0.0001) and AML transformation (p = 0.0005) in the total population. Among the MDS patients with low or intermediate-1 risk defined according to the International Prognostic Scoring System (IPSS), SRSF2 mutations predicted a shorter OS (p = 0.009) and were more likely to transform to AML (p = 0.007). Conclusions This meta-analysis indicates an independent, adverse prognostic impact of SRSF2 mutations on OS and AML transformation in patients with de novo MDS. This also applies to the subgroup of low- or intermediate-1-IPSS risk MDS. The identification of mutations in SRSF2 can improve current risk stratification and help make treatment decisions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    12
    Citations
    NaN
    KQI
    []