Modelling of 4D Seismic Data for the Monitoring of Steam Chamber Growth During the SAGD Process

2010 
This paper presents an integrated workflow for the interpretation of 4D seismic data to monitor steam chamber growth during the steam-assisted gravity drainage recovery process (SAGD). Superimposed on reservoir heterogeneities of geological origin, many factors interact during thermal production of heavy oil and bitumen reservoirs, which complicate the interpretation of 4D seismic data: changes in oil viscosity, fluid saturations, pore pressure, and so on. The workflow is based on the generation of a geological model inspired by a real field case of the McMurray formation in the Athabasca region. The approach consists of three steps: the construction of an initial static model, the simulation of thermal production of heavy oil with two coupled fluid-flow and geomechanical models and the production of synthetic seismic maps at different stages of steam injection. The distribution of geological facies is simulated on a fine grid using a geostatistical approach, which honours all available well data. The reservoir’s geomechanical and elastic properties are characterized by logs and literature at an initial stage before the start of production. Production scenarios are run to obtain pore pressure, temperature, steam and oil saturations on a detailed reservoir grid around a well pair at several stages of production. Direct coupling with a geomechanical model produces volumetric strain and mean effective stress maps as additional properties. These physical parameters are used to compute new seismic velocities and density for each stage of production according to Hertz and Gassmann formulae. Reflectivity is then computed, and a new synthetic seismic image of the reservoir is generated for each stage of production. The impacts of heterogeneities, production conditions and reservoir properties are evaluated for several simulation scenarios from the beginning of steam injection to 3 years of production. Results show that short-term seismic monitoring can help in anticipating early changes in steam injection strategy. In return, long-term periods allow the behaviour of the steam chamber to be monitored laterally and in the upper part of the reservoir. This study demonstrates the added value of 4D seismic data in the context of steam-assisted heavy oil production. These modifications of the stress state may imply deformations that can, in turn, have an impact on reservoir production. These changes also have an influence on wave propagation into rocks and fluids and may consequently produce differences on seismic velocities and on the travel time. The objectives of this work are to evaluate the impact of reservoir heterogeneities on steam chamber growth and to improve the interpretation of 4D seismic data in steam-assisted production. The study is based on a heavy oil field of the Canadian Athabasca McMurray formation. Two periods of SAGD production are studied in detail: the early steam injection and later on when the steam chamber develops laterally and vertically toward the top of the reservoir.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    31
    Citations
    NaN
    KQI
    []