Synthesis and characterization of dopamine-modified Ca-alginate/poly(N-isopropylacrylamide) microspheres for water retention and multi-responsive controlled release of agrochemicals

2020 
Abstract The multi-responsive controlled-release system could enhance crop yield while improving utilization efficiency of agrochemicals, and minimize environmental pollution caused by agrochemicals overuse. This work reports a novel Ca-alginate/Poly(N-isopropylacrylamide)@polydopamine (Ca-alginate/PNIPAm@PDA) microsphere to control the agrochemicals release. Microsphere with a semi-interpenetrating network, which contained pH-sensitive Ca-alginate, temperature-sensitive poly(N-isopropylacrylamide) (PNIPAm), and sunlight-sensitive polydopamine (PDA), was characterized by thermogravimetric analysis, zeta potential, Fourier transform infrared spectroscopy, and scanning electron microscopy to prove the successful synthesis. Moreover, the comprehensive performances, including photothermal conversion, water absorbency, water retention, and controlled-release agrochemicals behaviors, were systematically investigated. The results indicated that the composite microsphere was a prosperous water and agrochemicals manager to effectively retain water and control the release of agrochemicals by external stimulation. Consequently, the Ca-alginate/PNIPAm@PDA microsphere with outstanding water-retention and controlled-release capacities is economical and eco-friendly and thus is promising for utilization as water and agrochemicals controlled-release carrier material in agriculture applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    10
    Citations
    NaN
    KQI
    []