Source profiles and reactivity of volatile organic compounds from anthropogenic sources of a megacity in southwest China.

2021 
Abstract Volatile organic compounds (VOCs) from anthropogenic sources are deleterious to air quality, climate, human health and vegetation. However, research on VOCs source profiles of the non-solvent use in some industries and the emission characteristics of motor vehicles under actual road conditions is limited in China. In this research, VOCs source profiles of industries (wood-based panel manufacturing and pharmacy) based on all product processes were constructed, and those of light and medium duty vehicles exhaust based on actual road conditions at different speeds were acquired in Chengdu, a megacity in southwest China. The results show that VOCs groups of various sources were dominated by oxygenated VOCs (OVOCs), which accounted for 27–84% of the total VOCs emission. Due to the great contribution of OVOCs to industrial source reactivity (SR), attention should be paid to the control over the emissions of the species with high reactivity, such as aromatics and alkenes, but also to the production processes with relatively large proportions of OVOCs species emission. VOCs emissions from gasoline and diesel vehicles running at a speed ranging from 0 to 40 km/h have approximately the same ozone formation potential (OFP), while the contribution of VOCs emission from diesel vehicles to the formation of urban ozone pollution deserves further attention. It is found that VOCs emission characteristics of some industries in China have changed as the upgrading of production processes in automobile manufacturing and other industries, such as the extensive use of water-based coatings instead of outdated solvent-based coatings, which increased the uncertainty of judgment parameters (B/T ratio, etc.) in source apportionment research. The ranges of B/T ratio of industrial process sources, solvent use sources and motor vehicles are 0.00–0.23, 0.01–0.75 and 0.35–0.92, respectively. Therefore, updating existing source profiles and further understanding the emission constitutions of characteristic species in these source profiles (such as BTEX ratio) will be conducive to further research on emission inventory, source apportionment for O3 pollution control effectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []