APOGEE view of the globular cluster NGC 6544

2021 
The second phase of the APOGEE survey is providing near-infrared, high-resolution, high signal-to-noise spectra of stars in the halo, disk, bar and bulge of the Milky Way. The near-infrared spectral window is especially important in the study of the Galactic bulge, where stars are obscured by the dust and gas of the disk in its line-of-sight. We present a chemical characterisation of the globular cluster NGC 6544 with high-resolution spectroscopy. The characterisation of the cluster chemical fingerprint, given its status of "interloper" towards the Galactic bulge and clear signatures of tidal disruption in its core is crucial for future chemical tagging efforts. Cluster members were selected from the DR16 of the APOGEE survey, using chemo-dynamical criteria of individual stars. A sample of 23 members of the cluster was selected. An analysis considering the intra-cluster abundance variations, known anticorrelations is given. According to the RGB content of the cluster, the iron content and $\alpha$-enhancement are [Fe/H] $= -1.44 \pm 0.04$ dex and [$\alpha$/Fe] $= 0.20 \pm 0.04$ dex, respectively. Cluster members show a significant spread in [Fe/H] and [Al/Fe] that is larger than expected based on measurement errors. An [Al/Fe] spread, signal of an Mg-Al anticorrelation is observed and used to constraint the cluster mass budget, along with C, N, Mg, Si, K, Ca, and Ce element variations are discussed. Across all the analysed evolutionary stages (RGB and AGB), about $\sim2/3$ (14 out of 23) show distinct chemical patterns, possibly associated with second-generation stars.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    147
    References
    0
    Citations
    NaN
    KQI
    []