The natural behavior of mononuclear phagocytes in HTS formation.

2016 
Hypertrophic scars (HTS) are caused by trauma or burn injuries to the deep dermis and are considered fibrosis in the skin. Monocytes, M1 and M2 macrophages are mononuclear phagocytes. Studies suggest that M2 macrophages are profibrotic and might contribute to HTS formation. Our lab has established a human HTS-like nude mouse model, in which the grafted human skin develops red, raised, and firm scarring, resembling HTS seen in humans. In this study, we observed the natural behavior of mononuclear phagocyte system in this nude mouse model of dermal fibrosis at multiple time points. Thirty athymic nude mice received human skin grafts and an equal number of mice received mouse skin grafts as controls. The grafted skin and blood were harvested at 1, 2, 3, 4, and 8 weeks. Wound area, thickness, collagen morphology and level, the cell number of myofibroblasts, M1- and M2-like macrophages in the grafted skin, as well as monocyte fraction in the blood were investigated at each time points. Xenografted mice developed contracted and thickened scars grossly. The xenografted skin resembled human HTS tissue based on enhanced thickness, fibrotic orientation of collagen bundles, increased collagen level, and infiltration of myofibroblasts. In the blood, monocytes dramatically decreased at 1 week postgrafting and gradually returned to normal in the following 8 weeks. In the xenografted skin, M1-like macrophages were found predominantly at 1-2 weeks postgrafting; whereas, M2-like macrophages were abundant at later time points, 3-4 weeks postgrafting coincident with the development of fibrosis in the human skin tissues. This understanding of the natural behavior of mononuclear phagocytes in vivo in our mouse model provides evidence for the role of M2-like macrophages in fibrosis of human skin and suggests that macrophage depletion in the subacute phases of wound healing might reduce or prevent HTS formation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    11
    Citations
    NaN
    KQI
    []