THE DUST PROPERTIES OF z {approx} 3 MIPS-LBGs FROM PHOTOCHEMICAL MODELS

2013 
The stacked spectral energy distribution (SED) 24 {mu}m Lyman break galaxies (MIPS-LBGs) detected by the Multiband Imaging Photometer for Spitzer (MIPS) is fitted by means of the spectrophotometric model GRASIL with an ''educated'' fitting approach which benefits from the results of chemical evolution models. The star formation rate-age-metallicity degeneracies of SED modeling are broken by using star formation history (SFH) and chemical enrichment history suggested by chemical models. The dust mass, dust abundance, and chemical pattern of elements locked in the dust component are also directly provided by chemical models. Using our new ''fitting'' approach, we derive the total mass M{sub tot}, stellar mass M{sub *}, gas mass M{sub g} , dust mass M{sub d} , age, and star formation rate (SFR) of the stacked MIPS-LBG in a self-consistent way. Our estimate of M{sub *} = 8 Multiplication-Sign 10{sup 10} of the stacked MIPS-LBG agrees with other works based on UV-optical SED fitting. We suggest that the MIPS-LBGs at z {approx} 3 are young (0.3-0.6 Gyr), massive (M{sub tot} {approx} 10{sup 11} M{sub Sun }), dusty (M{sub d} {approx} 10{sup 8} M{sub Sun }), and metal-rich (Z {approx} Z{sub Sun }) progenitors of elliptical galaxies undergoing a strong burst of more » star formation (SFR {approx} 200 M{sub Sun} yr{sup -1}). Our estimate of M{sub d} = 7 Multiplication-Sign 10{sup 7} M{sub Sun} of the stacked MIPS-LBG is about a factor of eight lower than the estimated value based on single temperature graybody fitting, suggesting that self-consistent SED models are needed to estimate dust mass. By comparing with Milky Way molecular cloud and dust properties, we suggest that denser and dustier environments and flatter dust size distribution are likely in high-redshift massive star-forming galaxies. These dust properties, as well as the different types of SFHs, can cause different SED shapes between high-redshift star-forming ellipticals and local starburst templates. This discrepancy of SED shapes could in turn explain the non-detection at submillimeter wavelengths of IR luminous (L{sub IR} Succeeds-Above-Single-Line-Equals-Sign 10{sup 12} L{sub Sun }) MIPS-LBGs. « less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []