Deficit in knee extension strength following anterior cruciate ligament reconstruction is explained by a reduced neural drive to the vasti muscles.

2021 
Key points Impaired expression and control of knee extension forces are common after anterior cruciate ligament reconstruction and are related to a high risk of a second injury. To provide novel insights into the neural basis of this impairment, we investigated the discharge patterns of motor units in the vastus lateralis and vastus medialis during voluntary force contractions. We found a lower knee extensor's strength of the reconstructed side with respect to the contralateral side, which was explained by deficits in motor unit discharge rate and an altered motoneuronal input-output gain. Insufficient excitatory inputs to motoneurons and increased inhibitory afferent signals potentially contributed to these alterations. These results further our understanding of the neural underpinnings of quadriceps weakness following anterior cruciate ligament reconstruction and can help to develop effective rehabilitation protocols to regain muscle strength and reduce the risk of a second injury. Abstract The persistence of quadriceps weakness represents a major concern following anterior cruciate ligament reconstruction (ACLR). The underlying adaptations occurring in the activity of spinal motoneurons are still unexplored. This study examined the discharge patterns of large populations of motor units (MUs) in the vastus lateralis (VL) and vastus medialis (VM) muscles following ACLR. Nine ACLR individuals and ten controls performed unilateral trapezoidal contractions of the knee extensor muscles at 35%, 50% and 70% of the maximal voluntary isometric force (MVIF). High-density surface electromyography (HDsEMG) was used to record the myoelectrical activity of the vasti muscles in both limbs. HDsEMG signals were decomposed with a convolutive blind source separation method and MU properties were extracted and compared between sides and groups. The ACLR group showed a lower MVIF on the reconstructed side compared to the contralateral side (28.1%; P 0.05). These results indicate that mid-to-long term strength deficits following ACLR may be attributable to a reduced neural drive to vasti muscles, with potential changes in excitatory and inhibitory synaptic inputs. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []