A New Synthetic Peptide with In vitro Antibacterial Potential Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA).

2016 
In this work, we performed the rational design of a cationic antimicrobial peptide, GIBIMPY4, using the software DEPRAMPs developed at the GIBIM research group. GIBIMPY4 has a length of 17 amino acids, it is amphipathic, its structure is α-helix and it has a net charge of (+5). Solid-phase peptide synthesis was performed using the Fmoc strategy in acid medium. The primary structure was confirmed by MALDI-TOF mass spectrometry. The antimicrobial activity of the peptide was evaluated by broth microdilution method by measuring optical density in 96-well microplates. The minimal inhibitory concentration of GIBIMPY4 to kill 50 % of the bacterial cells (MIC50) was 6.20 ± 0.02 µM for MRSA and 4.55 ± 0.02 µM for E. coli O157:H7, while also reporting a bacteriostatic effect for the later. GIBIMPY4 activity was sensitive to salt concentration in E. coli but insignificant effect in its activity against MRSA. The peptide seems to be a broad-spectrum antimicrobial agent based on the results against Gram-positive and Gram-negative bacteria and was specific for bacterial cells E. coli O157:H7 with index of specificity equal to 9.01 in vitro assays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    2
    Citations
    NaN
    KQI
    []