Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties

2014 
Abstract Organic–inorganic ion-exchangers based on gel-like strongly acidic resin, which contain different amount of zirconium hydrophosphate, have been obtained. The samples were investigated using methods of transmission and scanning electron microscopy, standard contact porosimetry, NMR 35 P spectroscopy. Nanoparticles of the inorganic constituent (10 nm) are deposited in voids between geld field and in structure defects of the polymer forming aggregates of micron size. These large particles squeeze and stretch pores of the polymer, where –SO 3 groups are located, a radius of these pores decreases from 10 nm down to 2 nm. A part of functional groups of the polymer component are excluded from ion exchange due to squeezing of pores, ion exchange properties are determined mainly by the inorganic constituent. Ion exchange capacity of the composites reaches 0.6–1.3 mmol cm −3 . These materials sorb preferably Cd 2+ and Ni 2+ from solutions, which contain also hardness ions. The highest break-through capacity has been found for the composite with the smallest microporosity of the polymer constituent, this value reaches 80% of total ion-exchange capacity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    27
    Citations
    NaN
    KQI
    []