Ellagic acid promotes Aβ42 fibrillization and inhibits Aβ42-induced neurotoxicity

2009 
Smaller, soluble oligomers of β-amyloid (Aβ) play a critical role in the pathogenesis of Alzheimer’s disease (AD). Selective inhibition of Aβ oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against Aβ neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on Aβ42 aggregation and neurotoxicity in vitro. EA promoted Aβ fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited Aβ aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in Aβ42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic Aβ aggregates to render them harmless, our MTT results showed that EA could significantly reduce Aβ42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    80
    Citations
    NaN
    KQI
    []