Development of a Novel Site-Specific Pegylated Interferon Beta for Antiviral Therapy of Chronic Hepatitis B Virus

2017 
ABSTRACT Although nucleot(s)ide analogues and pegylated interferon alpha 2a (PEG-IFN-α2a) can suppress hepatitis B virus (HBV) replication, it is difficult to achieve complete HBV elimination from hepatocytes. A novel site-specific pegylated recombinant human IFN-β (TRK-560) was recently developed. In the present study, we evaluated the antiviral effects of TRK-560 on HBV replication in vitro and in vivo. In vitro and in vivo HBV replication models were treated with antivirals including TRK-560, and changes in HBV markers were evaluated. To analyze antiviral mechanisms, cDNA microarray analysis and an enzyme-linked immunoassay (ELISA) were performed. TRK-560 significantly suppressed the production of intracellular HBV replication intermediates and extracellular HBV surface antigen (HBsAg) ( P P in vitro and in vivo ( P = 0.004 and P = 0.046, respectively), and intracellular HBV covalently closed circular DNA (cccDNA) reduction by TRK-560 treatment was also significantly higher than that by PEG-IFN-α2a treatment in vivo ( P = 0.0495). cDNA microarrays and ELISA for CXCL10 production revealed significant differences between TRK-560 and PEG-IFN-α2a in the induction potency of interferon-stimulated genes. TRK-560 shows a stronger antiviral potency via higher induction of interferon-stimulated genes and stronger stimulation of immune cell chemotaxis than PEG-IFN-α2a. As HBsAg loss and HBV cccDNA eradication are important clinical goals, these results suggest a potential role for TRK-560 in the development of more effective treatment for chronic hepatitis B infection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    11
    Citations
    NaN
    KQI
    []