Ventilation and detection of airborne SARS-CoV-2: elucidating high-risk spaces in naturally ventilated healthcare settings

2021 
Background: In healthcare settings in low- and middle-income countries, which frequently rely upon natural ventilation, the risk of aerosol transmission of SARS-CoV-2 remains poorly understood. We aimed to evaluate the risk of exposure to SARS-CoV-2 in naturally-ventilated hospital settings by measuring parameters of ventilation and comparing these findings with results of bioaerosol sampling. Methods: We measured outdoor and room CO2 to estimate absolute ventilation (liters per second [L/s]) from 9 hospitals in Bangladesh during October 2020 - February 2021. We estimated infectious risk across different spaces using a modified Wells-Riley equation. We collected air samples from these same spaces at 12.5 L/min over 30 minutes and performed RT-qPCR to detect SARS-CoV-2 N-gene. We used multivariable linear regression and calculated elasticity to identify characteristics associated with ventilation. Results: Based on ventilation of 86 patient care areas and COVID-19 case numbers, we found that over a 40-hour exposure period, outpatient departments posed the highest median risk for infection (5.4%), followed by COVID intensive care units (1.8%). We detected SARS-CoV-2 RNA in 18.6% (16/86) of air samples. Ceiling height and total open area of doors and windows were found to have the greatest impact on ventilation. Conclusion: Our findings provide evidence that naturally-ventilated healthcare settings may pose a high risk for exposure to SARS-CoV-2, particularly among non-COVID designated spaces, but improving parameters of ventilation can mitigate this risk.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []