Enhanced Photoelectrochemical Water Oxidation Performance on BiVO4 by Coupling of CoMoO4 as a Hole-Transfer and Conversion Cocatalyst

2018 
Manipulation of interfacial charge separation and transfer is one of the primary breakthroughs to improve the water oxidation activity and stability of BiVO4 photoanode. In the present work, a CoMoO4-coupled BiVO4 (BiVO4/CoMoO4) film was designed and prepared as the photoanode for photoelectrochemical (PEC) water oxidation. Compared with the bare BiVO4 film, obviously improved PEC water oxidation performance was observed on the BiVO4/CoMoO4 film. Specifically, a higher water oxidation photocurrent density of 3.04 mA/cm2 at 1.23 V versus RHE was achieved on the BiVO4/CoMoO4 photoanode, which is of about 220% improvement over bare BiVO4 photoanode (1.34 mA/cm2 at 1.23 V vs RHE). In addition, the BiVO4/CoMoO4 film photoanode was of better stability and faster hole-to-oxygen kinetics for water oxidation, without significant activity attenuation for 6 h of reaction at 0.65 V versus RHE. The enhanced water oxidation performance on the BiVO4/CoMoO4 film photoanode can be ascribed to the synergistic effect of the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    14
    Citations
    NaN
    KQI
    []