Multi-stimuli-responsive liquid marbles stabilized by superhydrophobic luminescent carbon dots for miniature reactors

2019 
Abstract Remote control of microfluidic locomotion by external stimuli is attracting extensive attention due to its practical applications in various areas such as chemical reactors, gas sensors and transporters. Within this report we describe an effective method of preparing liquid marbles (LMs) stabilized by super-hydrophobic luminescent carbon dots (CDs) and demonstrate their outstanding photothermics, fluorescence and diamagnetism. The super-hydrophobic CDs were synthesized by surface functionalization using polyhedral oligomeric silsesquioxane (POSS) and manipulation of the LMs was achieved using light, electricity and magnetism. LMs could act as ideal models of collision-triggered miniature reactors for enhanced chemical reactions, with fast mixing of microfluidics leading to substantial improvement in reaction rate and selectivity. For the first time, the use of collisions triggered by multi-external stimuli has been demonstrated, showing an intensification to the micromixing process and therefore an enhancement to the microreactions. We expect that these LMs can be applicable in microfluidics, miniaturized reactors and many other associated industries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    7
    Citations
    NaN
    KQI
    []