One-Dimensional Silver-Thiolate Cluster-Assembly: Effect of Argentophilic Interactions on Excited-State Dynamics.

2021 
We report the synthesis, crystal structure, and electronic structure calculations of a one-dimensional silver-thiolate cluster-assembled and its ultrafast spectroscopic investigation. Experiments and theory find the material to have a significant gap as the HOMO-LUMO absorption corresponds to 2.69 eV, and the defect-free structure is calculated to have a gap of 2.82 eV. Cluster models demonstrate that the gap energy is length-dependent. Theoretical studies identify a nonbonding metallophilic interaction that exists between two Ag atoms in adjacent strings that helps to stabilize the chain structure. Transient absorption spectroscopy reveals that the electron dynamics is a mixture of the behavior of cluster and nanoparticle, with the material having a 346 fs ground-state relaxation like a cluster, and the electron dynamics is dominated by electron-phonon coupling with a decay time of 1.5 ps, unlike the isolated cluster whose decay is mostly radiative.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []