Frequency dependence of excitation-contraction of multicellular smooth muscle preparations: the relevance to bipolar electrosurgery.

2014 
Abstract Background Bipolar electrosurgical tissue welding uses forceps-like electrodes for grasping the tissues and delivering high-frequency electric current (HFEC) to produce local heat, desiccation, and protein denaturation, resulting in the fusion of the contacting tissues. Although in this technique no electric current is flowing through the whole body to cause electric injury, depending on the frequency of applied energy, it may produce local excitation of intramural nerves, which can propagate beyond the surgical site potentially causing harmful effects. Materials and methods The effects of varying frequency of HFEC on tissue excitability in bipolar electrosurgical modality were studied in vitro using electric field stimulation (EFS) method on multicellular smooth muscle strips of rat vas deferens. Contractile response to 5-s-long sine wave EFS train was taken as the measure of excitation of intramural nerves. Results EFS-induced contraction consisted of phasic and tonic components. The amplitude of both components decreased with increasing frequency, with tonic component disappearing at about 10 kHz and phasic component at about 50 kHz. Because components of EFS-induced contraction depend on different neurotransmitters, this indicates that various neurotransmitter systems are characterized by distinct frequency dependence, but above 50 kHz they all become inactivated. Bipolar electrosurgical sealing of porcine gut showed no difference in the structure of seal area at HFEC of 67 and 533 kHz. Conclusions EFS frequency of 50 kHz represents the upper limit for excitation. HFEC above 50 kHz is safe to use for bipolar electrosurgical tissue welding without concerns of excitation propagating beyond the surgical site.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    5
    Citations
    NaN
    KQI
    []