Unravelling the impact of Ta doping on the electronic and structural properties of titania: A combined theoretical and experimental approach

2021 
The introduction of new energy levels in the forbidden band through the doping of metal ions is an effective strategy to improve the thermal stability of TiO2. In the present study, the impact of Ta doping on the anatase to rutile transition (ART), structural characteristics, anion and cation vacancy formation were investigated in detail using Density Functional Theory (DFT) and experimental characterisation including, X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS). The average crystallite size of TiO2 decreases with an increase in the Ta concentration. At high temperatures, more oxygen atoms entered the crystal lattice and occupy the vacancies, leading to lattice expansion. Importantly, we find that Ta doping preserved the anatase content of TiO2 up to annealing temperatures of 850 °C which allows anatase stability to be maintained at typical ceramic processing temperatures. The substitution of Ti4+ by the Ta5+ ions increased the electron concentration in the crystal lattice through formation of Ti3+ defect states. Raman studies revealed the formation of new Ta bonds via disturbing the Ti-O-Ti bonds in the crystal lattice. It is concluded that under the oxidising conditions, Ta5+ ions could be enhanced on Ta-TiO2 surface due to the slow diffusion kinetics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []