AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications.

2020 
Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through focal amplification of genomic segments. Recent results implicate extrachromosomal DNA (ecDNA) as the primary driver of focal copy number amplification (fCNA) - enabling gene amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an fCNA’s structure is a first step in deciphering the mechanisms of its genesis and the fCNA’s subsequent biological consequences. We introduce a computational method, AmpliconReconstructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150 kb) with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity reconstructions. After validating its performance through multiple simulation strategies, AR reconstructed fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA, a breakage-fusion-bridge and other complex rearrangements. By reconstructing the rearrangement signatures associated with an fCNA’s generative mechanism, AR enables a more thorough understanding of the origins of fCNAs. Focal copy number amplifications (fCNAs), which drive cancer pathogenicity, arise by a number of mechanisms and can be challenging to call. Here the authors present AmpliconReconstructor for precise and scalable fCNA reconstruction using optical mapping and next-generation sequencing data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    13
    Citations
    NaN
    KQI
    []