Controlled detonation initiation in hypersonic flow

2020 
Abstract Experimental evidence of controlled detonation initiation and propagation in a hypersonic flow of premixed hydrogen-air is presented. This controlled detonation initiation is created in a hypersonic facility capable of producing a Mach 5 flow of hydrogen-air. Flow diagnostics such as high-speed schlieren and OH* chemiluminescence results show that a flame deflagration-to-detonation transition occurs as a combined result of turbulent flame acceleration and shock-focusing. The experimental results define three new distinct regimes in a Mach 5 premixed flow: deflagration-to-detonation transition (DDT), unsteady compressible turbulent flames, and shock-induced combustion. A two-dimensional implicit-LES (ILES) simulation, which solves the compressible, reactive Navier-Stokes equations on an adapting grid is conducted to provide additional insight into the local physical mechanism of detonation transition and propagation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    2
    Citations
    NaN
    KQI
    []