Synthesis of diepoxycyclohexylethyl tetramethyldisiloxane and its application to stereolithography 3D printing

2020 
The purpose of this study is to synthesize a new kind of a cationic-type UV-curing prepolymer diepoxycyclohexylethyl tetramethyldisiloxane, which is used to replace the current prepolymers’ common cycloaliphatic epoxy resins to prepare a novel 3D printing stereolithography material.,Diepoxycyclohexylethyl tetramethyldisiloxane was characterized and analyzed by FT-IR and 1HMR. Diepoxycyclohexylethyl tetramethyldisiloxane was compounded with a polycaprolactone polyol, some acrylates and photoinitiators to prepare a novel 3D printing stereolithography resin (3DPSLR11). Optical properties of 3DPSLR11 were investigated by HRPL-150A stereolithography apparatus and INITELLI-RAY400 UV-curing system. Tensile mechanical properties of printed 3DPSLR11 specimens were tested by WDW-50-type universal testing machine, and the glass transition temperature (Tg) was determined by DMA. Rectangle plates and double-cantilever parts were fabricated by using the stereolithography apparatus with 3DPSLR11 as the printing material, and the dimension shrinkage factors and the curl factors of the parts were investigated.,The experimental results showed that the critical exposure (Ec) of the 3D printing 3DPSLR11 was 11.6 mJ/cm2, its penetration depth (Dp) was 0.18 mm, the tensile strength of the cured 3DPSLR11 was 40.1 MPa, the tensile modulus was 1,741.4 MPa, the elongation at break was 15.3%, Tg was 113°C, the dimension shrinkage factor was less than 0.85% and the curl factor was less than 8.00%.,In this work, a novel 3D printing 3DPSLR11 was prepared with diepoxycyclohexylethyl tetramethyldisiloxane as a main prepolymer. The novel 3DPSLR11 possessed excellent photosensitivity, and its cured products had good mechanical and thermal properties. The accuracy and resolution of the fabricated parts were high with 3DPSLR11 for stereolithography in 3D printing, which showed that 3DPSLR11 has potential application value as 3D printing material.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []