The Effects of Exposure to Microgravity and Reconditioning of the Lumbar Multifidus and Anterolateral Abdominal muscles; Implications for people with LBP.

2020 
ABSTRACT Background context One of the primary changes in the neuromuscular system in response to microgravity is skeletal muscle atrophy, which occurs especially in muscles that maintain posture while being upright on Earth. Reduced size of paraspinal and abdominal muscles has been documented after spaceflight. Exercises are undertaken on the International Space Station (ISS) during and following space flight to remediate these effects. Understanding the adaptations which occur in trunk muscles in response to microgravity could inform the development of specific countermeasures, which may have applications for people with conditions on Earth such as low back pain (LBP). Purpose The aim of this study was to examine the changes in muscle size and function of the lumbar multifidus (MF) and anterolateral abdominal muscles a) in response to exposure to 6- months of microgravity on the International Space Station and b) in response to a 15-day reconditioning program on Earth. Design Prospective longitudinal series Patient sample Data were collected from 5 astronauts who undertook 7 long-duration missions on the ISS. Outcome measures For the MF muscle, measures included cross-sectional area (CSA) and linear measures to assess voluntary isometric contractions at vertebral levels L2 to L5. For the abdominal muscles, the thickness of the transversus abdominis (TrA), obliquus internus abdominis (IO) and obliquus externus abdominis (EO) muscles at rest and on contraction were measured. Methods Ultrasound imaging of trunk muscles was conducted at 4 timepoints (pre-flight, post-flight, mid-reconditioning, and post reconditioning). Data were analysed using multi-level linear models to estimate the change in muscle parameters of interest across three time periods. Results Beta-coefficients (estimates of the expected change in the measure across the specified time period, adjusted for the baseline measurement) indicated that the CSA of the MF muscles decreased significantly at all lumbar vertebral levels (except L2) in response to exposure to microgravity (L3= 12.6%; L4 = 6.1%, L5=10.3%; P Conclusions In-flight exercise countermeasures mitigated, but did not completely prevent, changes in the size and function of the lumbar MF and anterolateral abdominal muscles. Many of the observed changes in size and control of the MF and abdominal muscles that occurred in response to prolonged exposure to microgravity paralleled those seen in people with LBP or exposed to prolonged bedrest on Earth. Daily individualised post-flight reconditioning, which included both motor control training and weight-bearing exercises with an emphasis on retraining strength and endurance to re-establish normal postural alignment with respect to gravity, restored the decreased size and control of the MF (at the L3-L5 vertebral levels) and anterolateral abdominal muscles. Drawing parallels between changes which occur to the neuromuscular system in microgravity and which exercises best recover muscle size and function could help health professionals tailor improved interventions for terrestrial populations. Results suggested that the principles underpinning the exercises developed for astronauts following prolonged exposure to microgravity (emphasizing strength and endurance training to re-establish normal postural alignment and distribution of load with respect to gravity) can also be applied for people with chronic LBP, as the MF and anterolateral abdominal muscles were affected in similar ways in both populations. The results may also inform the development of new astronaut countermeasures targeting the MF and abdominal muscles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    9
    Citations
    NaN
    KQI
    []