Complete Suppression of Detrimental Polymorph Transitions in All-Inorganic Perovskites via Nanoconfinement

2019 
Reducing the size of metal halide perovskite crystals to the nanoscale has been demonstrated to stabilize high-performance metastable polymorphs at room temperature. Cesium lead iodide (CsPbI3), for example, typically exists as the insulating δ-phase at room temperature but can adopt the narrow-bandgap γ-phase when the crystal size is reduced to the nanometer length scale. Here we advance a fundamental understanding of the role of nanoconfinement in CsPbI3 polymorph stabilization through a combination of X-ray diffraction and temperature-dependent photoluminescence. Using a wet annealing method to directly form γ-CsPbI3 from solution in the cylindrical nanopores of anodized aluminum oxide, we discovered that nanoconfinement lowers the δ−γ solid-state phase transition temperature from 448 K in the bulk to 370 K. Once formed, nanoconfined γ-CsPbI3 crystals were found to be stable across the temperature range of 4–610 K and upon an unprecedented one year of air exposure at room temperature. Taking advantage ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    10
    Citations
    NaN
    KQI
    []