Modulating the Graphitic Domains of Hard Carbons Derived from Mixed Pitch and Resin to Achieve High Rate and Stable Sodium Storage.

2021 
Resin derived hard carbons (HCs) generally demonstrate remarkable electrochemical performance for both sodium ion batteries (SIBs) and potassium-ion batteries (KIBs), but their practical applications are hindered by their high price and high temperature pyrolysis (≈1500 °C). Herein, low-cost pitch is coated on the resin surface to compromise the cost, and meanwhile manipulate the microstructure at a relatively low pyrolysis temperature (1000 °C). HC-0.2P-1000 has a large number of short graphitic layer structures and a relatively large interlayer spacing of 0.3743 nm, as well as ≈1 nm sized nanopores suitable for sodium storage. Consequently, the as produced material demonstrates a superior reversible capacity (349.9 mAh g-1 for SIBs and 321.9 mAh g-1 for KIBs) and excellent rate performance (145.1 mAh g-1 at 20 A g-1 for SIBs, 48.5 mAh g-1 at 20 A g-1 for KIBs). Furthermore, when coupled with Na3 V2 (PO4 )3 as cathode, the full cell exhibits a high energy density of 251.1 Wh kg-1 and excellent stability with a capacity retention of 73.3% after 450 cycles at 1 A g-1 .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []