Precision image-guided colonic surgery: proof of concept for enhanced preoperative and intraoperative vascular imaging.

2020 
BACKGROUND Colorectal surgery has benefited from advances in precision medicine such as total mesorectal resection, and recently, mesocolon resection, fluorescent perfusion imaging, and fluorescent node mapping. However, these advances fail to address the variable quality of mesocolon dissection and the directed extent of vascular dissection (including high ligation) or pre-resection anastomotic perfusion mapping, thereby impacting anastomotic leaks. We propose a new paradigm of precision image-directed colorectal surgery involving 3D preoperative resection modeling and intraoperative fluoroscopic and fluorescence vascular imaging which better defines optimal dissection planes and vascular vs. anatomy-based resection lines according to our hypothesis. METHODS Six pigs had preoperative CT with vascular 3D reconstruction allowing for the preoperative planning of vascular-based dissection. Laparoscopic surgery was performed in a hybrid operating room (OR). Superselective arterial catheterization was performed in branches of the superior mesenteric artery (SMA) or the inferior mesenteric artery (IMA). Intraoperative boluses of 0.1 mg/kg or a continuous infusion of indocyanine green (ICG) (0.01 mg/mL) were administered to guide fluorescent-based sigmoid and ileocecal resections. Fluorescence was assessed using proprietary software at several regions of interest (ROI) in the right and left colon. RESULTS The approach was feasible and safe. Selective catheterization took an average of 43 min. Both bolus and continuous perfusion clearly marked pre-identified vessels (arteries/veins) and the target colon segment, facilitating precise resections based on the visible vascular anatomy. Quantitative software analysis indicated the optimal resection margin for each ROI. CONCLUSION Intra-arterial fluorescent mapping allows visualization of major vascular structures and segmental colonic perfusion. This may help to prevent any inadvertent injury to major vascular structures and to precisely determine perfusion-based resection planes and margins. This could enable tailoring of the amount of colon resected, ensure good anastomotic perfusion, and improve oncological outcomes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []