Nanocavity-Enhanced Giant Stimulated Raman Scattering in Si Nanowires in the Visible Light Region

2019 
Silicon photonics has been a very active area of research especially in the past two decades in order to meet the ever-increasing demand for more computational power and faster device speeds and their natural compatibility with complementary metal-oxide semiconductor. In order to develop Si as a useful photonics material, essential photonic components such as light sources, waveguides, wavelength convertors, modulators, and detectors need to be developed and integrated. However, due to the indirect electronic bandgap of Si, conventional light emission devices such as light-emitting diodes and lasers cannot be built. Therefore, there has been considerable interest in developing Si-based Raman lasers, which are nonlinear devices and require large stimulated Raman scattering (SRS) in an optical cavity. However, due to the low quantum yield of SRS in Si, Raman lasers have very large device footprints and high lasing threshold, making them unsuitable for faster, smaller, and energy-efficient devices. Here, we ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    7
    Citations
    NaN
    KQI
    []