MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for Low-Temperature NH3-SCR and In Situ DRIFTS Study Reaction Mechanism.

2020 
Monometallic and bimetallic MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) catalysts were prepared by the solvothermal method for NH3-SCR. XRD, BET, SEM, and EDS-mapping tests indicate the successful synthesis of the MOF-74-M catalyst with uniform distribution of metal elements and large specific surface area, and the morphology is almost hexagonal. Adding Mn element to a single-metal catalyst can enhance activity, which is mainly because of the existence of various valence states of Mn so that it has excellent redox properties; the catalytic activity of water and sulfur resistance tests showed that the catalytic activity of MOF-74-M increases after adding a proper amount of SO2, mainly because of the increase in acidic sites. In situ DRIFTS results indicate that the low-temperature range of MOF-74-MnCo and MOF-74-Mn is dominated by the E-R mechanism and the high-temperature range is dominated by the L-H mechanism. The entire temperature range of MOF-74-Zn is dominated by the L-H mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    12
    Citations
    NaN
    KQI
    []