Combination and Processing Keratin with Lignin as Novel Biocomposite Materials for Additive Manufacturing Technology

2019 
Additive manufacturing using Nature's resources is a desirable goal. In this work we examine how the inherent macromolecular properties of keratin and lignin can be utilised and developed using green chemistry principles to form 4D functional materials. A new methodology utilising protein complexation by lignin was applied to form copolymers and reinforce keratin cross-linking networks on aqueous and solid state processing. Solubility, chemical and processing characteristics found a favoured 4:1 ratio of keratin to lignin was most desired for effective further processing as 3D printed forms. Thermally processing keratin-lignin with plasticisers and processing aids demonstrated extruded FDM filaments could be formed at temperatures >130˚C, but degradation of keratin-lignin materials was observed. Employing paste printing strategies, keratin-lignin hydrogels could successfully print 3D skirt outlines. This was achieved with aqueous hydrogels prepared at 30-40% solids content with and without plasticizers over a defined processing timeframe. Mechanical response to moisture stimuli was successfully demonstrated for the 4:1 keratin-lignin printed material on water soaking, realising the ability of these keratin-lignin biocomposite materials to introduce a 4th dimensional response after 3D printing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []