Feature Learning of Virus Genome Evolution With the Nucleotide Skip-Gram Neural Network:

2019 
Recent studies reveal that even the smallest genomes such as viruses evolve through complex and stochastic processes, and the assumption of independent alleles is not valid in most applications. Advances in sequencing technologies produce multiple time-point whole-genome data, which enable potential interactions between these alleles to be investigated empirically. To investigate these interactions, we represent alleles as distributed vectors that encode for relationships with other alleles in the course of evolution and apply artificial neural networks to time-sampled whole-genome datasets for feature learning. We build this platform using methods and algorithms derived from natural language processing (NLP), and we denote it as the nucleotide skip-gram neural network. We learn distributed vectors of alleles using the changes in allele frequency of echovirus 11 in the presence or absence of the disinfectant (ClO2) from the experimental evolution data. Results from the training using a new open-source sof...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    1
    Citations
    NaN
    KQI
    []