Histone H2AX Is Phosphorylated at Sites of Retroviral DNA Integration but Is Dispensable for Postintegration Repair

2004 
The histone variant H2AX is rapidly phosphorylated (denoted {gamma}H2AX) in large chromatin domains (foci) flanking double strand DNA (dsDNA) breaks that are produced by ionizing radiation or genotoxic agents and during V(D)J recombination. H2AX-deficient cells and mice demonstrate increased sensitivity to dsDNA break damage, indicating an active role for {gamma}H2AX in DNA repair; however, {gamma}H2AX formation is not required for V(D)J recombination. The latter finding has suggested a greater dependence on {gamma}H2AX for anchoring free broken ends versus ends that are held together during programmed breakage-joining reactions. Retroviral DNA integration produces a unique intermediate in which a dsDNA break in host DNA is held together by the intervening viral DNA, and such a reaction provides a useful model to distinguish {gamma}H2AX functions. We found that integration promotes transient formation of {gamma}H2AX at retroviral integration sites as detected by both immunocytological and chromatin immunoprecipitation methods. These results provide the first direct evidence for the association of newly integrated viral DNA with a protein species that is an established marker for the onset of a DNA damage response. We also show that H2AX is not required for repair of the retroviral integration intermediate as determined by stable transduction. These observations provide independent support for an anchoring model for the function of {gamma}H2AX in chromatin repair.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    52
    Citations
    NaN
    KQI
    []