Numerical simulations on the flow fields of dynamic axial compression columns in chromatography processes

2017 
Dynamic axial compression (DAC) columns are key elements in Simulated Moving Bed, which is a chromatography process in drug industry and chemical engineering. In this study, we apply the computational fluid dynamics (CFD) technique to analyze the flow fields in the DAC column and propose rules for distributor design based on mass conservation in fluid dynamics. Computer aided design (CAD) is used in constructing the numerical 3D modelling for the mesh system. The laminar flow fields with Darcy's law to model the porous zone are governed by the Navier-Stokes equations and employed to describe the porous flow fields. Experimental works have been conducted as the benchmark for us to choose feasible porous parameters for CFD. Besides, numerical treatments are elaborated to avoid calculation divergence resulting from large source terms. Results show that CFD combined with CAD is a good approach to investigate detailed flow fields in DAC columns and the design for distributors is straightforward.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []