Pulsational Pair-instability Supernovae. II. Neutrino Signals from Pulsations and Their Detection by Terrestrial Neutrino Detectors

2020 
A Pulsational Pair-instability supernova (PPISN) evolves from a massive star with a mass ~80–140 M⊙ that develops electron–positron pair-instability after hydrostatic He-burning in the core has finished. In Leung et al. (Paper I), we examined the evolutionary tracks and the pulsational mass-loss history of this class of stars. In this paper, we analyze the thermodynamical history to explore the neutrino observables of PPISNe. We compute the neutrino light curves and spectra during pulsation. We then study the detailed neutrino emission profiles of these stars and estimate the expected neutrino detection count for different terrestrial neutrino detectors, including, e.g., KamLAND and Super-Kamiokande. Finally, we compare the neutrino pattern of PPISN with other types of supernovae based on a canonical 10 kt detector. The predicted neutrino signals can provide an early warning for telescopes to trace for the early time optical signals. The implications of neutrino physics on the expected detection are also discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    8
    Citations
    NaN
    KQI
    []