Wide-Angle, Monocular Head Tracking using Passive Markers

2021 
Camera images can encode large amounts of visual information of an animal and its environment, enabling high fidelity 3D reconstruction of the animal and its environment using computer vision methods. Most systems, both markerless (e.g. deep learning based) and marker-based, require multiple cameras to track features across multiple points of view to enable such 3D reconstruction. However, such systems can be expensive and are challenging to set up in small animal research apparatuses. We present an open-source, marker-based system for tracking the head of a rodent for behavioral research that requires only a single camera with a potentially wide field of view. The system features a lightweight visual target and computer vision algorithms that together enable high-accuracy tracking of the six-degree-of-freedom position and orientation of the animal9s head. The system, which only requires a single camera positioned above the behavioral arena, robustly reconstructs the pose over a wide range of head angles (360 degrees in yaw, and approximately +/-120 degrees in roll and pitch). Experiments with live animals demonstrate that the system can reliably identifyrat head position and orientation. Evaluations using a commercial optical tracker device show that the system achieves accuracy that rivals commercial multi-camera systems. Our solution significantly improves upon existing monocular marker-based tracking methods, both in accuracy and in allowable range of motion. The proposed system enables the study of complex behaviors by providing robust, fine-scale measurements of rodent head motions in a wide range of orientations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    1
    Citations
    NaN
    KQI
    []