Thermally-driven gold@poly(N-isopropylacrylamide) core-shell nanotransporters for molecular extraction

2020 
Abstract Hypothesis Molecular extraction efficiency can be boosted with the assistance of nanoparticles (NPs). It is based on adsorption of the extractants in one phase and desorption in another phase, which requires a reversible phase transfer of the NPs. Experiments We synthesized the gold@poly(N-isopropylacryamide) (Au@PNIPAM) NPs via an interfacial self-assembly method enhanced by post-polymerization. We adopted Rhodamine 6G (R6G) as the model molecule for the extraction test. In comparison, UV–Vis extinction spectra were recorded to monitor the extraction processes with or without the Au@PNIPAM NPs. We further analyzed theoretically with thermodynamics and first-principle calculations. Findings The hybrid Au@PNIPAM NPs show a reversible phase transfer between the interface and chloroform phases. The Au NPs assisted extraction efficiency of R6G shows 5 times higher than that without Au NPs. The thermodynamic analysis of the nanotransportation system agrees well with the ab initio density functional theory calculations. This nanoparticle-assisted molecular transportation modifies the extraction kinetics significantly, which will provide further implications for biphasic catalysis, pollutant treatment and drug delivery.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    2
    Citations
    NaN
    KQI
    []