The Outer Solar System Origins Survey

2016 
We report the discovery, tracking, and detection circumstances for 85 trans-Neptunian objects (TNOs) from the first 42 square degrees of the Outer Solar System Origins Survey. This ongoing r-band solar system survey uses the 0.9 square degree field of view MegaPrime camera on the 3.6 meter Canada-France-Hawaii Telescope. Our orbital elements for these TNOs are precise to a fractional semimajor axis uncertainty of less than 0.1 percent. We achieve this precision in just two oppositions, as compared to the normal three to five oppositions, via a dense observing cadence and innovative astrometric technique. These discoveries are free of ephemeris bias, a first for large trans-Neptunian surveys. We also provide the necessary information to enable models of TNO orbital distributions to be tested against our TNO sample. We confirm the existence of a cold "kernel" of objects within the main cold classical Kuiper Belt and infer the existence of an extension of the "stirred" cold classical Kuiper Belt to at least several au beyond the 2:1 mean motion resonance with Neptune. We find that the population model of Petit et al. remains a plausible representation of the Kuiper Belt. The full survey, to be completed in 2017, will provide an exquisitely characterized sample of important resonant TNO populations, ideal for testing models of giant planet migration during the early history of the solar system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []