The Effect of Electrothermal Nonuniformities on Parallel Connected SiC Power Devices Under Unclamped and Clamped Inductive Switching

2016 
Nonuniformities in the electrothermal characteristics of parallel connected devices reduce overall reliability since power is not equally dissipated between the devices. Furthermore, a nonuniform rate of operational degradation induces electrothermal variations thereby accelerating the development of failure. This paper uses simulations and experiments to quantitatively and qualitatively investigate the impact of electrothermal variations on the reliability of parallel connected power devices under unclamped inductive switching (UIS) conditions. This is especially pertinent to SiC where small die areas mean devices are often connected in parallel for higher current capability. Measurements and simulations show that increasing the variation in the initial junction temperatures and switching rates between parallel connected devices under UIS reduces the total sustainable avalanche current by 10%. It is seen that the device with the lower junction temperature and lower switching rate fails. The measurements also show that the maximum sustainable avalanche energy for a given variation in junction temperature and switching rate increases with the avalanche duration, meaning that the effect of electrothermal variation is more critical with high power (high current and low inductor) UIS pulses compared with high energy (low current and high inductance) pulses. These results are important for condition monitoring and reliability analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    54
    Citations
    NaN
    KQI
    []