The role of the vagus nerve on dexmedetomidine promoting survival and lung protection in a sepsis model in rats

2021 
Abstract Background Sepsis often results in acute lung injury (ALI). Dexmedetomidine (Dex) was reported to protect cells and organs due to its direct cellular effects. This study aims to investigate the role of vagus nerves on Dex induced lung protection in lipopolysaccharide (LPS)-induced ALI rats. Methods The bilateral cervical vagus nerve of male Sprague-Dawley rats was sectioned or just exposed as sham surgery. After LPS administration, Dex antagonist yohimbine (YOH) and/or Dex was injected intraperitoneally to rats with or without vagotomy. The severity of ALI was determined with survival curve analysis and lung pathological scores. The plasma concentrations of interleukin 1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), catecholamine and acetylcholine were measured with enzyme-linked immunosorbent assay. Results The median survival time of LPS-induced ALI rats was prolonged by Dex (22 h, 95% CI, [24.46, 92.20]) vs. 14 h, 95% CI, [14.60, 89.57] of the LPS control group, P  Conclusions Our data suggested that Dex increased vagal nerve tone that partially contributed to its anti-inflammatory and lung-protective effects. The indirect anti-inflammation and direct cytoprotection of Dex are likely through high vagal nerve tone and α2-adrenoceptor activation, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []