Finite element analysis of different titanium miniplates: Evaluation of three-dimensional designs applied on condylar neck fractures.

2021 
Abstract Introduction The fixation of condylar neck fractures is raising difficulties and for this reason, many plate designs have been developed. The current study compares the performance of four miniplates used in the condylar neck. Material and Methods A virtual condylar neck fracture in a mandible obtained from a CT scan was fixed with four miniplates (two straight miniplates, lambda, strut, and trapezoidal). Using finite element analysis, we examined the fragments' displacements and stress distribution in the titanium material and bone. The models were analyzed under two loading conditions: a reduced bite force of 135 N and a force of 500 N. Results No risk of material failure was observed. For a load of 135 N, all four plates offer an adequate fixation. For 500 N of applied loading, the lambda and strut plates showed the best rigidity and lowest bone strains. The two parallel plates showed the lowest rigidity and the trapezoidal plate the highest bone strains around all screws. Discussion These findings imply that three-dimensional miniplates (lambda, strut) perform better when higher loads are applied. On the other hand, the trapezoidal plate has an increased risk of screw loosening and the two straight plates higher mobility of the fragments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []